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seen by the results reported here, Fax at an Fe3+ site in 
beryl is considerably smaller than for the other three 
crystals. 
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I. INTRODUCTION 

THE dielectric function of a metal is of fundamental 
interest not only for its direct experimental rele

vance, but because of its close relationship to the cor
relation structure and excitation system of the metal. 
In a "normal" metal, the dielectric function is believed 
to be determined primarily by the single-particle excita
tions. In a superconductor, on the other hand, there 
exists a strong competition between the single-particle 
and collective effects, especially in the longitudinal di
electric function. We have studied the longitudinal 
dielectric function of a superconductor, in order to 
exhibit these collective effects, as well as to clarify some 
points which we shall mention below. 

Anderson1 and Rickayzen2 have previously studied 
the dielectric function, and they have obtained the 
fundamental equations. More recently, Nishiyama3 has 
discussed limiting cases of these equations. We have ob
tained numerical values for the dielectric function, and 
thus are in a position to discuss the dielectric function 
quite generally. 

An elementary approximation to the dielectric func
tion is obtained by restricting the possible excitations 
to those of two quasi-partides. In the normal case, this 
leads to the Lindhard4 formula. We shall consider the 
irreducible polarization part, rather than the dielectric 

* Supported in part by the U. S. Air Force Office of Scientific 
Research. 

1 P. W. Anderson, Phys. Rev. 112, 1900 (1958). 
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function. The wave number and frequency-dependent 
dielectric function is related to the irreducible polariza
tion part, iVA(g,co), by 

e(q,o>)=l + v(q)NA(q,a,), (1) 

where v(q) is the Fourier transform of the Coulomb 
potential, 

v(q) = 4Te*/q>=3(u>p/vQq)2/N. (2) 

We have introduced the notation up for the classical 
frequency, oop

2 = 47rwe2/ra, and vo for the Fermi velocity. 
The density of states at the Fermi surface is denoted by 
N^mpo/ir2. The irreducible polarization part is slightly 
more convenient to discuss theoretically than the di
electric constant itself. The function A(#,a>) is to a first 
approximation independent of the coupling. I t depends 
weakly on the Coulomb potential v(q), being much more 
strongly influenced by the "average" attractive force. 

It, of course, should be realized, that up/voq is very 
large for wavelengths of interest, namely, wavelengths 
such that voq<kB& for ©<100°K. As a result of this 
large, direct Coulomb coupling, great experimental 
difficulties stand in the way of a direct observation of 
the dielectric constant. 

The polarization part is given by the sum of all ir
reducible graphs shown in Fig. 1. An irreducible graph 
is one which cannot be separated into two pieces by 

FIG. 1. General structure of the 
polarization part. The shaded area jffifoi "* 
represents the sum of all graphs which yyyffli 
cannot be separated into two disjoint L%§?7 
graphs by breaking a single Coulomb *<c/0 
line. ^c*s 
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The longitudinal dielectric constant has been calculated for the extended Bardeen-Cooper-Schrieff er model 
of a superconductor. An explicit formula is obtained which has been evaluated numerically. The competition 
between collective and single-particle effects is pronounced, so that the dielectric function differs remarkably 
from the most elementary approximations to it. However, the dielectric function of the superconductor 
does not differ greatly from that in the normal metal in either the high-frequency or static limit, regardless 
of the wavelength. This prevents the modifications due to superconductivity from being readily observed. 
In particular, the shift in the static polarizability should cause very small shifts in the phonon speed, so 
small that no effect on the lattice specific heat should be observed. 
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FIG. 2. (a) Lowest order 
bubble graph, (b) Lowest 
order bubble graph in the 
theory of superconductiv
ity. Heavy directed lines 
represent propagators for 
"dressed" electrons, i.e., 
quasi-particles. (c) Approxi
mate self-energy correc
tions used in defining the 
quasi-particle operators. A 
graphical representation of 
the integral equation. 

cutting either a single Coulomb line (denoted by the 
dashes) or a phonon line (denoted by the wavy line). 
The Lindhard formula can be obtained by retaining the 
graph of Fig. 2(a) alone. 

The dielectric constant which we have written down 
here is the electronic contribution to the complete di
electric function. To it must be added the ionic contribu
tion which in the ion plasma approximation takes simple 
form, — (Op/co)2, where Qp is the ionic plasma frequency. 
The inverse of the complete dielectric function takes 
into account correctly all of the polarization graphs, 
both reducible and irreducible. We shall not concern 
ourselves with the refinements possible in calculating 
the ionic contribution, but shall concentrate on the 
electronic part only. 

The results of Lindhard may, for our purposes, be 
summarized most easily, by noting that the absorptive 
part of A(g,w), which we denote by A2(g,w), is given by 

A 2
( L ) (q,u>) = TOO /2voq, w<Voq 

= 0, oo>voq. 
(3) 

We are assuming throughout that hv^q is much smaller 
than the Fermi energy. The dispersive (real) part of 
A(<?,o>) is given by the Kramers-Kronig relation, 

Ai(ff,«) = (2/w) I «'&>' A2(g,co')/V2-a>2) (4) 

O^ 2(1^ ZUlg 4Wq 5 0 ^ 

FIG. 3. Function B2{q,o), defined in the text, vs frequency. (I) 
q*=<ag/vQ; (II) q—2a>g/v0; (III) q — 3cog/v0; (IV) q = 4iao/v0. 

which is generally valid. Furthermore, the sum rule, 

/ o)A2(q1co)do}=w (voq)2/6} 

Jo 
(5) 

and the property 
A2(?,co)>0, w>0 (6) 

hold for any permissible polarization part, be it for a 
superconductor or for a normal metal. 

The most striking effect of superconductivity is the 
introduction of an energy gap into the spectrum of 
A-(q,u>). Thus, we naively expect that for a supercon
ductor, A2(<?,co) will vanish for frequencies below a gap 
frequency wk. The "oscillator strength" thus removed 
from the gap region must be replaced at higher fre
quencies, according to (5). Consequently, in a super
conductor, A2(g,w) might appear as in Figs. 3 and 4. 

We have plotted in Fig. 3 the function U2(g,co), where 
B(q,u>) is the polarization part connected with Fig. 2(b) 
in which the propagators are associated with the quasi-
particles of the theory of superconductivity. In the 
matrix Green's function notation of Nambu,5 we have 

£ (? ,« )= (i/N)(2w)~* Tr J d*k*,G(*-Jg, *o~ i»)* iG(*+ig , *o+J«) 

NJ 

d3k 

(2TT) 

tu(k+hq)v(k-%q)+u(k-hq)v(k+hq)-} 
E(k+iq)+E(k-hq) 

ZE(k+iq)+E(k-hq)J-a?' 
(7) 

This formula and all subsequent ones are based on the 
approximation, 

0)g=2(t>= constant. 

We have denoted the energy gap by <£. The u% r's, 
and E's are the usual Bogoliubov functions.6 

Now B is not an approximation to the polarization 
part consistent with gauge invariance. In particular, 
the sum rule (6) is not satisfied. Insofar as <t> is a con-

6 Y. Nambu, Phys. Rev. 117, 648 (1960). This notation is re
viewed in the Appendix. 

6 N. N. Bogoliubov, Zh. Eksperim. i Teor. Fiz. 34, 85 (1958) 
[translation: Soviet Phys.—JETP 7, 41 (1958)]. 

stant, in fact, the total oscillator strength of B(q,oo) by 
itself is infinite, since the high-frequency tail of B„ is 
proportional to (<£/w)2. Consequently, it is essential to 
include the collective effects for this reason alone. 

H. EXISTENCE OF COLLECTIVE EXCITATIONS 

We now proceed to show that at sufficiently long 
wavelengths there necessarily are contributions to 
t2(g,w) and therefore to A2(g,co) at very low frequencies. 
Indeed, we must have 

«(?,«)->«>, J - > 0 (9) 
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since we are dealing with conductors rather than insu
lators. It is easy to see that this condition is incom
patible with 

€2(<?,W) = 0, 0)<0)g. (10) 

Since one can find the bound 

by using the conditions (4) and (5). Thus, the strict 
energy gap (10), cannot be correct. In fact, it turns 
out that there is a pole in e, i.e., a 5 function in t2(<?,w), 
at a frequency o)=o)(q), where o)(q) is proportional to q 
in the long-wavelength limit. 

III. CALCULATION OF THE POLARIZATION PART 

It is well known that, in order to maintain gauge in-
variance, one cannot keep an arbitrary selection of 
graphs in calculating the response to an electric field. 
Just as in ordinary quantum electrodynamics, along 
with every graph, one must also include all those graphs 
in which the external field interacts with every charge 
carrying line. 

Accordingly, following Nambu, we must include not 
only the graphs of Fig. 2(a), which contain "self-energy" 
corrections, but all the "ladders" as in Fig. 5. This 
remark applies equally well to the corrections to the 
Lindhard formula in the normal case. Glick7 has studied 
this selection of graphs in the theory of the electron 
gas with repulsive interactions. The procedure we are 
following is practically the same as that adopted by 
Anderson and Rickayzen, who in effect kept only those 
ladders giving the scattering of particles of opposed 
spin. We choose to approximate this sum of graphs 
slightly differently than was done by Anderson and 
Rickayzen, however. 

Again utilizing the notation of Nambu, we may write 
the polarization part as 

A (q)0>) = iN~l
 (2TT)-4 Tr / d*k 

XT3G(&-4g)r(fc-!?, k+hq)G(k+§q), (12) 

where Y(p,pf) is the vertex part satisfying the approxi
mate equation 

T{p+hq,p-\q) 

= u3-n3(27r)-4 UAkG(k+hq) 

Xr(k+iq, k-hq)G(k+±q)D(p-k). (13) 

Here D(q,u>) is the sum of the Coulomb and phonon 
propagators, i.e., 

D{qv) = M/?+gW{q)/[u?- (cqYJ (14) 

7 A. Glick, Phys. Rev. 129, 1399 (1963). 

O F A S U P E R C O N D U C T O R 2497 

FIG. 4. Function B^iq^) vs frequency. Heavy lines: (V) 
q = $a)0/v0; (VI) £=6tta/fl0; (VII) g-7(aa/vQ. Light lines: A(L)(#co) 
at corresponding wavelengths. 

In this equation g is the electron-phonon coupling 
constant, h(q) is the form factor associated with this 
coupling, and c is the phonon velocity. 

We recall that the energy gap equation, in this nota
tion, is 

**£= (2TT)-4 jdAk *8G(k)*xl>G(k)T:8D(p-~k). (15) 

In order to study Eq. (13) it is customary to suppose 
that G(k) has the structure 

G(k) = i/lkQ-^(k2/2m-fi)-^(t>']. (16) 

More importantly, D(q,u>) is replaced by a frequency-
independent shell potential V, which vanishes outside a 
shell of width a>0 around the Fermi surface and is 
constant within.8 

This set of approximations has been questioned re
cently.9 The final results are at present unclear. It seems 
safe to say, however, that the ordinary approximation is 
quite satisfactory for many purposes. 

The use of a shell potential is, of course, not strictly 
speaking gauge invariant. However, it is well known 
that the shell potential leads to small deviations from 
gauge invariance as long as the width of the shell is 
large compared with the energy gap. 

Fig. 5. 

FIG. 5. Ladder graphs included in higher approximations. 

8 J. Bardeen. L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 
108, 1175 (1957). 

9 J. C. Swihart, IBM J. Res. Develop. 6, 14 (1962). P. Morel 
and P. W. Anderson, Phys. Rev. 125, 1263 (1962). G. J. Culler, 
B. D. Fried, R. W. Huff, and J. R. Schrieffer, Phys. Rev. Letters 
8, 399 (1962). 



2498 R I C H A R D E . F R A N C E 

In order to solve Eq. (13), having made this simpli
fication, we make the substitution 

xzrxz~*z=hQ+'Gihi—11:2^2+^3^3. (17) 

I t may be readily verified that the components ho, and 
hh satisfy homogeneous equations. In order to show this, 
the symmetry under the exchange k+%q—>— k+\q 

We thus have 

r / NVn2 \ l 
\+NV\m-\ ) . (20) 

We now proceed to an evaluation and discussion of 
formula (20). Unfortunately, although the functions 
m, n, and I, are relatively simple, it is not easy to see 
even the gross features of the final formula except by 
numerical methods. Before giving the numerical results, 
however, we shall discuss some of the salient features. 

We remark immediately, that if the simplifications of 
symmetry about the Fermi surface and reflection sym
metry are made, the approximations of Anderson and 
Rickayzen correspond exactly to the expression 

A^ = B(qjo))+2NVn2/(l-NVl). (21) 

In some senses, this is as meaningful an approximation 
to the correct polarization part as the formula (20). As 
the energy gap vanishes, while the coupling strength 
NV remains fixed, AU) approaches the Lindhard ap
proximate value. Thus, we can regard AU) — AiL) as 
giving the difference between the value of the polariza
tion part in the normal and superconducting states. 

We shall therefore discuss first the expression (21). 
The first term of this expression, i?(g,o>), as has already 
been mentioned, may be regarded as the contribution 
of the quasi-particles alone, whereas the second provides 
the corrections arising from the collective effects. As 
might be anticipated, the contribution of the inde
pendent quasi-particles dominates for wavelengths 
shorter than the coherence length (qvo/oig^>\). The 
collective oscillations predominate for long wavelengths, 

must be exploited. One must further take advantage of 
the thinness of the effective interaction region around 
the Fermi surface (w0«po2/2w) by noting that one may 
reflect through the Fermi surface as if it were flat. We 
thus have symmetry under the reflection £2/2w—/x—• 
— (k2/2m—ix) (M is the chemical potential). We may 
therefore suppose that ho and hi vanish. With the sub
stitution (17), we obtain from (13) the result, 

(qvo/o3g<l), and are competitive for wavelengths such 
that qvo/ug<J' 

The quasi-particle term has the properties 

B2(q,oi) = 0, co<a>„ (22a) 

B 2 ( ^ « ) - A 2 ( L > ( ^ ) > 0 , « > « , (22b) 

A^(qfi) = B(q,0). (22c) 

However, as noted before, there is too much oscillator 
strength in B2 alone, so that the sum rule is not satisfied. 
Property (c) is particularly important, namely, that the 
collective excitations have no influence on the static 
polarizability. 

IV. STATIC POLARIZABILITY 

We have just seen that the excitation of independent 
quasi-particles determines the zero-frequency polari
zability. This is particularly important since the static 
polarizability determines the effect of the electron 
screening on the phonon spectrum. [The phonon 
frequency is determined by the zero of the complete 
dielectric constant, l — v(q)NA(q1oo) — (Op/w)2, which is 
to a good approximation at u>2 = ttp

2/v(q)NA(qfi).~] 
A shift of the phonon spectrum can be observed by 

measuring the specific heat of the lattice. However, it 
turns out that the static polarizability depends very 
weakly on the energy gap, i.e., it does not depend 
strongly on whether or not the superconducting transi
tion has taken place, so that the lattice specific heat 
should not undergo an observable change. 

I t is easy to demonstrate that the static polarizability 
is insensitive to the superconducting transition once it 
is realized that the entire contribution to it comes from 
the independent quasi-particle excitations. Indeed, it 

where 

/ NVrP \ /1 NVn1 \ 
* 3 = -NV[ m+ ) / \+NVm+ ), (18) 

\ l-NVl// \ (\-NVl)J 

m = iB(q^)y (19a) 

d*k u(k-±q)v(k-±q)+u(k+±q)v(k+iq) 1 f 
N J 

d'k |>(4-i?)«(A+ij)+»(*-$jMJH 

(2TT)3 ZE(k+$q)+E(k-tq)J-<* 

(19b) 

1 f d*k lu{k-hq)u(k+^)+v{k-hq)v(k+hq)JlE{k+\q)+E{k-%q)-] 
l=— \ —. ——r^ • (19c) 
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is easy to see that B(q,0) may be expanded as 

B(qfi)~l+a(voq/n)+b(o)9/u>o)2+ • • •, (23) 

where a and b are constants. In particular, there are no 
terms depending on the ratio voq/ug. The values of the 
constants as given by (7) are not particularly meaning
ful, however, since the whole approximation scheme is 
based on the supposition that c /̂coo and voq/p are small. 
Thus, we reach the conclusion that the static polariza-
bility and, consequently, the sound speed are practically 
independent of the energy gap, for all wavelengths, and 
especially for wavelengths comparable with the coher
ence length, £o=2vo/irug. 

Consequently, we find especially, that the experi
ment of Bryant and Keesom10 cannot be explained on 
the basis of a shift in the sound speed, as proposed by 
Ferrell.11 (The static polarizability would have to in
crease by a fraction of order <ag/voq when this fraction is 
in the neighborhood of 1/7 if the experiments of Bryant 
and Keesom are to be explained on this basis.) 

V. COLLECTIVE EFFECTS 

The second term of (21) can be regarded as deriving 
from collective effects. The denominator, d{q,u)) vanishes 
at a frequency w(g). I t is not difficult to study the van
ishing of the denominator in the long-wavelength limit. 
The result is the well-known one, u(q) — qvo/^J3, #£o«l . 

In this limit, all of the oscillator strength of the 
polarization propagator is associated with the collective 
pole. Consequently, we find that 

e ( ^ ) - > l - o ; p
2 / [ o ) 2 - ( M ) 2 / 3 ] , <?£o«l. (24) 

I t should be realized that collective states of the system 
are given by the singularities of l/e(<7,co) which accord
ing to (24) consist of a pole at w^w p . The pole of the 
dielectric function itself does not have such a direct 
meaning, although it is a manifestation of a collective 
response. 

In a neutral fermion superfluid, there would exist 
actual states at a frequency approximately determined 
by the vanishing of the denominator. Even in a charged 
system, these states are of interest, since it is usually 
convenient to regard the system as consisting of an 
underlying one with effectively short-ranged forces, and 
then to take into account later the effects of the long-
range forces on the density fluctuations. Thus, we see 
that the ghost of the collective state of the underlying 
neutral system remains to haunt the dielectric constant 
of the charged system. 

In a neutral fluid the collective states have a simple 
classical interpretation. They are simply the states of 
ordinary sound which can persist because in the presence 
of an energy gap there is no way in wThich they can decay. 
The sound speed is related to the compressibility in the 
usual way. Thus, in the weak-coupling limit we obtain 

10 C. A. Bryant and P. H. Keesom, Physica 4, 460 (1960). 
11 R. A. Ferrell, Phys. Rev. Letters 6, 541 (1961). 
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the sound speed for a perfect Fermi liquid, VQ/>/5. I t is 
possible to obtain corrections to this sound speed in the 
case of weak coupling. 

The sound frequency is the frequency at which there 
is a pole in the improper polarization propagator. The 
improper propagator is defined as the sum of all graphs 
of the type shown in Fig. 1, including those in which a 
connection is made by means of a single interaction 
line. I t is readily related to the proper polarization 
part by the formula 

A i m p r 0per=A/(l-iVFA). (25) 

The pole of this expression may be readily studied in the 
limit in which both the frequency and wave number 
vanish. In this limit the functions defined in (19) have 
the form 

m -> | , (26a) 

n—>u)/2Gig, (26b) 

(NV)~i-l -> Q(^o)2-co2]/2co.2. (26c) 

By using these expressions together with (20) and (25), 
we find the speed of ordinary sound in the neutral 
Fermi liquid to be a2 = W ( l + § V N ) . This result differs 
from that of Anderson,1 and is somewhat more general 
in that we have included the ladder graphs as well as 
the "bubble" contributions. 

At shorter wavelengths such that qvo>3o)g the col
lective pole practically disappears. In A(A)(g,o;), the 
pole at the zero of d(q,o>) never completely disappears. 
Rather, the position of the pole approaches the gap 
frequency, approximately as o)g—o)(q)^o)ge~~iqvo/(j3^)fi

1 

where 0 is a number of order unity. The residue at the 
pole vanishes exponentially also. However, in the more 
complete expression (20), there is no pole for these 
shorter wavelengths. In expression (20), the absorptive 
part of the polarization-propagator is modified so that 
instead of jumping discontinuously at the gap frequency, 
it rises continuously from zero at that point. The rise 
occurs over a region exponentially small in size, 
however. 

Even though the pole itself is unimportant, the col
lective effects are strongly felt for wavelengths with 
qvo<7o)g and are important for considerably shorter 
wavelengths. In general, the collective effects tend to 
increase the oscillator strength at lower frequencies, 
at the expense of oscillator strength at greater fre
quencies. The high-frequency tail of the absorption due 
to independent quasi-particles is, of course, completely 
eliminated. 

We may raise the question of whether there are any 
collective states, that is, whether there are any zeros of 
the dielectric function (other than at the plasma fre
quency). When there is a pole in the dielectric function, 
the function will be negative for frequencies just greater 
than the frequency of the pole. On the other hand, the 
absorptive part of the dielectric function rises very 
abruptly at the energy gap. If this rise were infinitely 
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FIG. 6. Function A 2
U ) (?><«>), defined in the text, vs frequency. 

Vertical lines represent 5-function contributions. (I) q=<ag/4vQ, 
(II) q=ag/2vo, (III) q=3a)g/4vQ} (IV) q=u>a/v0. 

steep, it would produce a large positive contribution to 
the dielectric function just below the gap frequency. 
In between the frequency of the pole and the gap fre
quency would lie a zero of the dielectric function. 

The dielectric function is not discontinuous at the 
frequency of the energy gap. According to the formula 
(20), the behavior of A2(g,o>) for frequencies just greater 
than the gap frequency is 

A2(g,o)) = a/[ln(w-we)]2, 

where a is weakly dependent upon the frequency. 
This behavior is just mild enough that it does not lead 
to a large positive contribution to A(g,w) for frequencies 
near ug. Consequently, the sign of the polarization part 
just below the gap frequency will depend predominantly 

on the absorption well away from the gap edge. Accord
ing to the numerical evaluation of Eq. (20), the dielec
tric function never actually vanishes in the gap region. 
We can thus conclude that there is no (s-wave) collective 
state. 

VI. NUMERICAL RESULTS 

In this section we deal with numerical results for 
representative values of the wavelengths. The results 
were obtained by numerical integration of formulas (22). 
The absorptive parts of the functions, m, n, and I, can 
be found in closed form. Expressions for these absorp
tive parts are given in the Appendix. This leaves one-
dimensional principal-value integrals to be performed 
numerically. It is estimated that these formulas were 
evaluated with an accuracy such that the difference 
AU)—A(L) is correct to 1%. The accuracy is less good 
when this difference is itself very small. 

0.5f 

FIG. 8. Function A2
U)(g,,o>) vs frequency. Vertical line repre

sents 8 function contribution. (I) q=:3u>a/vo, (II) q~4a)g/vo, (III) 
q^5ug/v0} (IV) q-6o>g/vQ} (V) q = 7(*)g/v0. 

FIG. 7. Function A2
U)(?,o>) vs frequency. Vertical lines repre

sent 5-f unction contributions. (I) g=5o>a/4z>0, (II) q=*3a)a/2vo, 
(III) ?=7«0/4flo, (IV) g=2cj0A0. 

FIG. 9. Functions A(L) and AU)(qi(a) vs frequency, q~ojg/vQ. 
(I) Ai">; (II) A ^ ) ; (III) A2^>; (IV) Aa<*>. 
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Figures 6, 7, and 8 contain plots of A2
U)(q,u) as a 

function of frequency for several values of the wave
length. The competition of the independent quasi-
particle and the collective effects can be seen. Figures 9 
and 10 contain plots of the real part of the polarization 
part as compared with the Lindhard formula, for two 
values of the wavelength. The real part is strikingly 
changed in the transition. However, it should be re
membered that the inverse of the dielectric constant is 
more readily observed, and in the inverse dielectric 
constant the difference is much less striking. 

We have also obtained by numerical integration the 
values of the first few moments of the absorptive part 
of the polarization propagator. The moments are de
fined by 

/»oo 

finiq) = (2/TT) / ««+iA2<*>(qt*)do/(qu0)***. (26) 

The "moment" ju_2 is just the static polarizability. This 
turns out to be independent of q over the range of wave
lengths here considered. It has the same value as in the 
normal case, as was previously remarked, namely, 

TABLE I. Position and residue of the pole of A U ) (<?>«) are listed 
as a function of wavelength. Also listed are the "moments" of the 
oscillator strength. The symbols are denned in the text. 

Voq/cog 

0.25 
0.50 
0.75 
1.00 
1.25 
1.50 
1.75 
2.00 
3.00 
4.00 
5.00 
6.00 
7.00 

o){q)/o3g 

0.142 
0.282 
0.412 
0.529 
0.634 
0.724 
0.798 
0.853 
1.0 

re/o>g 

0.227 
0.443 
0.640 
0.810 
0.928 
0.968 
1.002 
0.969 
0.437 

M-i 

0.578 
0.570 
0.563 
0.560 
0.555 
0.548 
0.547 
0.550 
0.524 
0.519 
0.516 
0.510 
0.509 

Ml 

0.206 
0.219 
0.225 
0.229 
0.234 
0.236 
0.238 
0.241 
0.250 
0.249 
0.242 
0.244 
0.245 

M2 

0.21 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 

-1.0 

FIG. 11. Functions A2(#,w) and A2
(A)(q,oi) vs frequency for 

q**2tag/vo. (I) A2
U); (II) A2, NV=0A; (III) A2,2VF=0.31; (IV) 

A,, i\TF = 0.72. 

/i_2=l. The zeroth moment is fixed by the sum rule. 
With our normalization it should be 

Numerical integrations of the formulas for ju_2 and juo 
agree with the theoretical values to about one part in 
104 or 103, respectively. Most of the error occurs in the 
numerical integration of the frequency region in the 
neighborhood of voq. 

The remaining moments are listed in Table I. Also 
given is the position u(q) and residue rc of the pole of 
the polarization part. This fixes the 5-function contribu
tion to the absorptive part of A2(̂ ,0?) as rc5(w—o)(q)). 

The listed moments may be compared with those of 
the Lindhard formula, which are /xn

(L) = l/(w+3). We 
also note the moments obtained in the long-wavelength 
limit, i.e., for o)(q) = voq/^J3, ro=v0q/\/3. In this case 
Mrt(c) = i(vT)~n. It should be noted that the continuum 
contribution already makes a significant contribution 
to A*2 at qvo=(tig/A. 

VTI. NORMAL CORRECTIONS TO THE 
DIELECTRIC FUNCTION 

Equation (20) contains, in addition to corrections to 
the Lindhard formula deriving from the nonvanishing 

5.0 

FIG. 10. Functions A(L) and AU)(q,cS) vs frequency: q~5a)g/v0. 
(I) Ai">; (II) Ai<*>; (III) A2<^>; (IV) A2W. 

FIG. 12. Functions A2(g,«) and A2
U)(qio)) vs frequency for 

g-7«, /*0 . (I) A»w>; (II) A2, # 7 = 0 . 3 1 ; (III) A2, NV=0.72. 
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FIG. 13. Functions K^L) and normal corrections to 
A2(L) vs frequency (after Glick). 

energy gap, corrections which would be present even 
in the normal state. These corrections are relatively 
small for small coupling constant. There exist corrections 
to the polarization part other than those given by (20), 
of course, but it is believed that the ladder sums are 
among the most important of the corrections. 

The effect of the correction is greatest whenever the 
approximate value of the polarization part, AiA)(q,o)) is 
large. Consequently, the corrections will be most im
portant near the "jumps," i.e., for frequencies in the 
neighborhood of o)g and voq. The jump at v0q will be 
particularly important, because A(A)(g,co) is large and 
negative there. The correction to A will consist of an 
enhancement of the absorptive part near voq, and a 
suppression near ug. In Figs. 11 and 12, the absorptive 
parts are plotted as a function of coupling constant for 
two values of the wavelength. As can be seen, for strong 
coupling, the difference is significant. 

Glick7 has found, that in the case of repulsive inter
actions alone, the absorptive part is enhanced at lower 
frequencies and suppressed at frequencies near the 
maximum. In addition, he finds a shift of scale arising 
from the self-energy correction. This shift has been 
neglected in our calculations. This behavior is sketched 
in Fig. 13. I t is to be contrasted with the behavior in a 
superconductor. The change in sign of the effective 
coupling in the two cases accounts for the difference. 

One should not put too much faith in the magnitude 
of these corrections, since the many additional correc
tions have not been systematically studied. 
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APPENDIX I 

We list below the formulas for the absorptive parts 
of the functions m, n, and /. In these formulas we have 
put K= (a)—wg)/(ai+Ug), s in20=[l — coff

2/(o>2—v0
2q2)~] 

X[yoq/(o)—o)g)y, and denoted by K, F(K,6) the com
plete and incomplete elliptic functions of the first kind. 
The corresponding functions of the second kind are 
denoted by E, E(K,6), respectively. The modulus of 
these functions is K. 

For OJ2 <o)g
2+ (voq)2, one has 

7T 0)g CO 

»2($,a>) = K, (II) 
2 v0q oo+o)g 

w o)-\-o)g 
m2 (q,<a) = E—n2 (q7<a), (12) 

4 qv0 

l2(q,o)) = m2(qyo)). (13) 

For [co,2+(z^)2]1/2 <co <0.5a>g+[(v0q)2+(0.5a>gyj/2, one 

has 

n2(q,a>) = - [ 2 # - F ( K , 0 ) ] , (14) 
4voq(o)+o)g) 

w(o)+o3g) 
m2(q,o)) = {IE—£(K,0) — K sin0]—»2 (<?,«), (15) 

SvQq 

Tr(o)—Q)g) 
h(qJo)) = tn2(qyu>)-\ sin0. 

4fl0g 

For a j > ^ a ) 0 + [ ( ^ ) 2 + ( | c o f f ) 2 ] 1 / 2 , one has 

TTiOgO) 

»2 (?,«) = 
AvQq(o)+o)g) 

F(K,0), 

(16) 

(17) 

T(0) + 0)g) 
m2 (q,a>) = [_E (K,6) — K sin0] - n2 (q,<a), (18) 

8v0q 

7r(co—o)g) 
l2 (q,u) = m2 (q,<a) H sin0. (19) 

4i>o? 

APPENDIX II 

Wre recall here for the convenience of the reader, the 
notation of Nambu. Let the destruction operators be 
redefined by dk\ —* a(k)\, a-**1" —> a(k)2. 

where T is the time ordering operator. I t is also con
venient to introduce four-dimensional notation for 
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the momentum-frequency variables, where \J(p)-=u(p)^z-v(p)xi. Here uy v, and E are 

*=(#o,p). defined by 

Expanding G(p) in terms of the Pauli matrices, xiy 1 in E(P)= [G»2/2w-M)2+<£2]1/2, 
the 2X2 spin space leads to the expression (16) for G 
in lowest approximation. The trace is over the spin _ .\y_ V« . Pi^m~^\ 
space. The propagator G may be diagonalized by means LU\P)J — ^ <" ^ . y 
of the unitary Bogoliubov transformation: 

\J(p)G(p)V(p) = i/£p0-^(E(p)-ir,n Lv(p)J= i~Lu(p)J. 

P H Y S I C A L R E V I E W V O L U M E 1 2 9 , N U M B E R 6 15 M A R C H 1 9 6 3 

Electronic Structure and the Properties of Metals. I. Formulation 
WALTER A. HARRISON 

General Electric Research Laboratory, Schenectady, New York 
(Received 22 October 1962) 

A method is formulated for the calculation from first principles of a variety of electronic and atomic 
properties of metals. The method depends upon three approximations: (1) the self-consistent-field ap
proximation ; (2) the assumption that the core states are the same as in the free atom; and (3) a perturbation 
solution, carried to second order, of the Hamiltonian matrix based upon orthogonalized plane waves. Only 
the last approximation distinguishes the method from more traditional band calculations; it is regarded as 
appropriate for the treatment of most polyvalent metals. The only experimental parameters which enter 
for a given metal are the atomic number and the atomic volume. 

It is found that many electronic properties, including the Fermi surface and scattering by defects or 
phonons, may be calculated as for free electrons with an effective perturbing potential. The matrix elements 
of this potential may be written as the product of a structure factor, depending only on the ion positions, 
and a form factor depending only on the Hartree-Fock field of the ion and upon the atomic volume. The 
form factor is found to be a function only of the magnitude of the change in wave number. 

It is found that for a given ion density the energy of the system may be written in terms of a central-
force, two-body interaction between ions or in terms of a sum over wave number space of the Fourier trans
form of this interaction (the energy-wave number characteristic). The procedure for computing these 
functions from the Hartree-Fock field of the corresponding ion is given. 

I. INTRODUCTION calculations, that many new aspects of the behavior of 

EXISTING a priori calculations of metallic prop- m e t a l s c o u l d b e t r e a t e d i n s o m e d e t a i l 

erties based on the full Hartree or Hartree-Fock T h e work to be described here is part of such a 
treatment of the crystal potential have been, for the program. There are two classes of properties which we 
most part, restricted to computations of the energy w i s h t 0 attack: first, atomic properties which depend 
bands. There are exceptions, notably calculations of the u P o n t h e variation of the total energy as the atoms are 
lattice distance and attempts at calculation of the rearranged; and second, electronic properties which 
cohesive energy, but for the most part properties which depend on the scattering of electrons when the crystal 
depend upon the details of the lattice potential and the i s n ° t perfectly ordered. For both classes of properties 
electronic structure have been beyond the reach of the computations can be carried out without the explicit 
available techniques. determination of the energy bands. We propose to 

Recent developments have given hope of going beyond carry out a rather complete Hartree calculation (ex-
these limitations in treating polyvalent metals. This change is also included where it is felt to be important) 
hope is based on the surprising fact that the Fermi for a general arrangement of the metal ions. 
surfaces of these metals differ very little from free- Certainly the most crucial approximation to be made 
electron spheres,1 indicating a relatively weak influence is the self-consistent-field approximation. Because of 
of the lattice potential. This suggests that we might this approximation we regard the cohesive energy, 
regard this potential as a perturbation and sufficiently which has a large contribution from the correlation 
simplify the analysis, in comparison to traditional band energy, as beyond our reach. Further, we might expect 

1 Extensive discussion of this point appears in the article, the change in energy associated with change in volume 
W. A Harrison Phys. Rev 118,1190 (1960), and in several articles t h a v e k c o n t r i b u t i o n from correlat ions. On the 
appearing in The Fermi Surface, edited by W. A. Harrison and & 

M. B. Webb (John Wiley & Sons, Inc., New York, 1960). o ther h a n d , i t is hoped t h a t changes in energy when the 


